Connectivity Action Team Summary

Gulf of Maine Atlantic Salmon Recovery Framework Public Meeting August 19, 2010

Current Team Members: Richard Dill, MDMR Jed Wright, USFWS Dan Kircheis, NMFS Rory Saunders, NMFS

Outline

Context Scale of the problem Habitat quantity and quality at the DPS scale Connectivity Strategy Metrics Actions selected in Portfolio 7 Prioritization Restoration project implementation Mainstem dams Assessment Portfolio 7 vs status quo

Being Anadromous – costs and benefits

Courtesy Katrina Mueller

Being Anadromous – costs and benefits

Benefits:

- Sub-adults in the marine environment very high growth potential in the ocean
- Juveniles in freshwater low predation risk compared to the marine environment
- Marine growth helps anadromous fish "swamp" would be competitors and predators

Cost:

Vulnerable to high mortality in the marine environment

Extensive migrations are necessary to strike the balance (growth potential vs predation risk)

Migrations are risky, and man-made barriers alter the cost/benefit ratio

In freshwater ATS need:

- Habitat for spawning
- Habitat for feeding and growth
- Large quantities of habitat to produce large numbers of smolts to withstand high mortality rates in the marine environment
- Access to wide variety of habitat types to overcome variability in local conditions
 - Climate, competition, catastrophic events

Eggs

 Clean, permeable, cobble/gravel substrate with well oxygenated water for proper embryo development

Courtesy of Project SHARE

Fry and Parr

- Cool waters with variable habitat types that provides for feeding, growth and shelter
 - Selection of habitats depends on where fish can optimize growth and minimize predation risk
 - small 1st order streams
 - major 3rd and 4th order rivers
 - beavers bogs, lakes and ponds
 - Use and selection of habitat types can vary seasonally and/or annually
 - Anadromous fish need options – one size does not fit all

Courtesy of Project SHARE

Smolts

Courtesy of Project SHARE

Require open migratory corridors that allow timely access to the marine environment

 Migration corridors that allow for timely migrations back to quality spawning and rearing habitats

Context – Scale of the Problem

Dams 782 dams in Maine 467 dams in the Gulf of Maine DPS Road crossings (1000s)Man-made barriers are a landscape-scale issue

Dams

Data gaps
 Total # of barriers
 Passage efficiency

 For salmon
 For other species

 Effects of barriers on productivity

Dams

Data gaps
 Total # of barriers
 Passage efficiency
 For salmon
 For other species
 Effects of barriers on productivity

Road Crossings

Data gaps
Total # of barriers
Passage efficience
For salmon
For other species
Effects of barrier on productivity

Habitat Quantity and "Quality" at the DPS scale

QuantityHabitat ModelWright et al. 2008

Not all habitat units are created equal

Habitat "Quality" Biological Valuation NMFS 2008 Temperature Biological communities Water Quality Substrate and cover

How much is enough?

Interim Recovery Criteria

 ≈ 2,000 adult returns per SHRU
 30,000 habitat units per SHRU of at least medium "quality"

How much do we have?

Strategy: "Enhanced connectivity between the ocean and freshwater habitats important for salmon recovery"

Metrics:

Number of accessible habitat units with a habitat quality score of 2 or 3 in Merrymeeting Bay SHRU;

Number of accessible habitat units with a habitat quality score of 2 or 3 in Penobscot Bay SHRU;

Number of accessible habitat units with a habitat quality score of 2 or 3 in Downeast SHRU

Actions selected in Portfolio 7

- Prioritization
- Restoration projectimplementation
- Mainstem dams
- Assessment

Portfolio 7 vsstatus quo

Prioritization — a strategic approach to restoring conn

- Perform fish passage barrier assessments throughout the GOM DPS
- Develop prioritization model to identify highest priority fish passage barriers for remediation
- Write prioritization guidelines to identify highest priority fish passage barriers for remediation

Restoration Project Implementation

Staff time for planning, permitting, and implementation oversight

Funding for feasibility and engineering

Courtesy of Project SHARE

Assessment

- Rigorously monitor selected "model" restoration sites in accordance with the GOM Council BRM guide (Collins et al. 2007)
 - Monumented cross sectional surveys
 - Water quality
 - Sediment size distribution
 - Photo stations
 - Fish community structure
- Enumeration of salmon habitat made available as a result of restoration activities

Mainstem Dams

- Develop fish passage efficiency targets that do not "jeopardize the continued existence" of the GOM DPS
- Implement fish passage efficiency targets that do not "jeopardize the continued existence" of the GOM DPS through section 7 and/or section 10

Status Quo vs Portfolio 7

Status Quo Largely opportunistic <10% of salmon resources Little targeted assessment Insufficient funds available to support significant amounts of on the ground restoration

Portfolio 7

- Strategic when possible
- 13% of salmon resources
- Focus on assessment and ecological connections
- Insufficient funds available to support significant amounts of

